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A large variety of organic substances having complicated Table 1. Cascade (4 + 2)—(2 + 2) Cycloaddition?
polycyclic structures and a wide assortment of stereogenic centers R
are found in nature. These compounds often exhibit attractive and R’ Co,R?  EtAICh = WCO,R?
specific biological activities. From the synthetic chemists’ point < | E—— !
of view, ideal strategies for preparing these structurally complex R?0 R%O,C™ gR?
substances would involve sequences in which stereocontrolled 2 3 4 (major diasteromer)

formation of multiple carborcarbon bonds occur in a single step

starting with simple, readily available materials. As a result, great &1y diene R\, R) aoylate (R) ~ product  yield (%)  dr'e
attention has been given to the development of multicomponent 1  2a(H,TBS)  3a(Me) 4a 64 88:9:3
reactions (MCR) because of their high degree of atom economy 2 22 3b(CH(CR))  4b 66 88:12:0
K S . . . . 3 2b(Me, TBS) 3a 4c 82 85:15:0
and their applications in combinatorial chemistry as well as , 5 3 4d 79 91:9:0
diversity-oriented syntheses. Despite the intense interest in MCR, 5 2c(Me, TIPS) 3a 4e 79 94:6:0
only a limited effort has been given to applying these processesto 6 2c 3b 4f 75 97:3:0

the synthesis of stereochemically complex polycyclic compoénds. + Reaci diions:2 (1 .3 4 ), 50 mol % EWAICH
i i eaction conditions: equiv), equiv), mol % X
Recent studies in our laboratory have led to development of a CHxCl,, —78°C, 1h.P Stereochemistry was not determined for the minor

hard Lewis acid (e.g., EtAlG)-catalyzed, intermolecular Michael  isomersc Diastereomeric ratio was determined By NMR.
aldol-like, (2 + 2)-cycloaddition reactioA.The process affords

substituted cyclobutanes starting with silyl enol ethers art Scheme 2
unsaturated esters. In an extension of this work, we envisaged that OTIPS MeO,C
a Lewis acid-promoted cascade process involving sequentiatDiels CO,Me  EtAICI, (50 mol%)
Alder reaction and (2+ 2)-cycloaddition between 2-siloxydiene + ||/ . /}@
and a,S-unsaturated ester partners would provide complex poly- CHCle, 78 °C o
. ; S . 5(1eq) (4 eq) 6 (40%)
cyclic products (Scheme 1). In this communication, we describe COMe
the results of an investigation of this novel catalytic cascade (4 z
2)—(2 + 2) cycloaddition process, which leads to the construction (OMe EtAICI, (50 mol%)
of bicyclo[4.2.0]octanes, and its application to the synthesis of a 5(1eq) * || cH.Cl . !
substance reported to be the cytotoxic sesquiterpene paesslerin A (4 eq) _78°Ctort ’ o'?ms
(1) by Palermo and co-workefs. 7 (43%)
Scheme 1 acrylate 8a) was found to afford a mixture of three diastereomeric
b § | cascade (4+2)-(2+2) trisubstituted bicyclo[4.2.0]octanek in 64% yield (entry 1). In
7 equ J/COZR cyeloaddition contrast, reaction of the 3-methyl-2-siloxydiersand2c resulted
R,SIO XN ’ d cat. Lewis acid in more efficient production ofic and4d, respectively (entries 3
¢ and 4). The enhanced yields in these cases might be a result of the
Diels-Alder higher stabilities of the tetrasubstituted silyl enol ether intermediates.
4 b g p 2 A slight improvement in diastereoselectivity was observed when
/f--- -~ COR d COR triisopropylsiloxydiene2c was employed as a reactant (entries 5
! I ,,D/ _> | and 6). The relative configuration of the major diastereomeric
ROL . si0 d ROL™ o d OAc roduct 4e was confirmed by using NMR spectroscopylhe
oG RsSIT © , P _ y using pect v
(2+2)-cycloaddition 1 (paesslerin A) excellent levels of diastereoselectivity observed in these cascade
reactions was likely a result of stereo-electronically controlled axial
Initial optimization to carry out desired cascade{4)—(2 + attack by acrylate in the second Michael aldol-like, {2 2)-

2) cycloaddition reactions showed that highest yields were obtained cycloaddition step. The stereochemistry at the cyclobutyl ester center
when 1 equiv of the siloxydiene, 4 equiv of the acrylate, and 0.5 in the products was established in the final aldol addition protess.
equiv of EtAICL were used fo 1 h reactions at-78 °C. When To probe an application of this novel MCR to the preparation
lesser amounts of either the acrylate or EtAl@ere employed, of the complex target, paesslerin &)(cascade (4 2)—(2 + 2)
incomplete reaction was observed. The results of the cascatle (4 cycloadditons of cyclic siloxydienes were investigated (Scheme 2).
2)—(2 + 2) cycloaddition process are summarized in Table 1. However, reaction of 2-siloxycycloheptadieBavith acrylate3a
Reaction of 2tert-butyldimethyl-siloxybutadiene2@) with methyl did not result in the formation of an MCR product even when it
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Scheme 3. Total Synthesis of 128
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OH
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> MeO,C —
H 1
HoOT! oTIPS
OTIPS
" 12 (R = Me)
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f.g hori 14 (R =TIPS)
o 15 (R=H)
| 1 (R=Ac)
OR 16 (R = p-BrBz)

a Reagent: (a) TIPSOTf, Ngt—78 °C, 90%. (b) Methyl propiolate,
EtAICI,, —40 °C to rt, 92%. (c) DIBAL-H (5 equiv),—78 °C, 74%. (d)
CICSOPh, Py, rt, then BSnH, AIBN, 80°C. (e)t-BuOK, H,O-THF, 70%
for two steps. (f) HOTT? EtsN, DMAP, rt, thent-dodecanethiol, 85C.
(g) TBAF, reflux, 81% for two steps. (h) A©®, cat. Sc(OTH, 99%. (i) For
15, Buli, rt, thenp-bromobenzoyl chloride, 41%.

revealed that the substances are not identical. The 2D-NMR data
for syntheticl are fully consistent with the structure of the target.
Finally, the structure of synthetit was unambiguously assigned
by using X-ray crystallographic analysis of the deriyetdromo-
benzoatel6.2® The results clearly demonstrate that a revision of
the structure of natural paesslerin A is required.

In conclusion, this study has led to the development of a novel
cascade (4 2)—(2 + 2) cycloaddition, which allows for the rapid
construction of polysubstituted bicyclo[4.2.0]octanes starting from
three simple components. It is noteworthy that the MCR process
is accompanied by formation of four carbecarbon bonds and
four stereogenic centers in a single operation. In addition, a short
stereoselective synthesis of a substance proposed paessldin A (
has been accomplished.
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(4 + 2) adduct6 was formed as a single diastereomer. A plausible
explanation for this observation is that steric hindrance retards the
second (2 2)-cycloaddition step. As expected, cascade-(2)—

(2 + 2) cycloaddition of5 with methyl propiolate in the presence

of EtAICI, did take place to furnish tricyclo[4.3.2Z:flundecane?

as a single diastereomer. A higher temperature was required for
this (2+ 2) cycloaddition reaction. 2D-NMR analysis revealed that
the adduct has the same relative stereochemistry as found in the
substance reported to be paesslerinlp (

The route for synthesis of paesslerin B,(employing the novel
cascade (4 2)—(2 + 2) cycloaddition process, is shown in Scheme
3. Siloxydiened was prepared from the known eno8é The key
cascade reaction &fwith methyl propiolate generated the tricyclic
intermediate 10 in excellent yield (92%) and with complete
diastereoselectivity. The relative stereochemistrj@fvas deter-
mined by using X-ray crystallograpHyA critical issue in this
sequence was regioselective reductiod@ét the C-12 ester group.
We anticipated that this would be favored over reduction at the
C-16 ester because of steric crowding of the latter by the bulky
triisopropylsiloxy group at C-5. In the event, treatmentl6fwith
DIBAL-H at —78 °C led to selective 1,2-reduction of the ester at

C-12, accompanied by unexpected 1,4-reduction of the cyclobutene

carboxylate to affordl1 in 74% yield.
Next, alcoholl1l was transformed intd2 by reductive dehy-
droxylation via the nonisolated intermediate xantt¥dtydrolysis
of the ester group iti2 to form 13 was followed by decarboxylation
to generatel4 by using an improved Barton's metHoemploying
HOTT 1% Treatment ofL4 with TBAF furnished alcohol5, which
was converted into the proposed structure of paesslerif) Ay
using Sc-catalyzed acetylatiéhThe sequence for the synthesis
of 1 from 8 was accomplished in 34% overall yield (eight steps).
Surprisingly, comparisons of thé1 and13C NMR data of the
synthetic compound with those reported for the natural product
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